Position of the maximum in a sequence with geometric distribution

Abstract : As a sequel to [arch04], the position of the maximum in a geometrically distributed sample is investigated. Samples of length n are considered, where the maximum is required to be in the first d positions. The probability that the maximum occurs in the first $d$ positions is sought for $d$ dependent on n (as opposed to d fixed in [arch04]). Two scenarios are discussed. The first is when $d=αn$ for $0 < α ≤ 1$, where Mellin transforms are used to obtain the asymptotic results. The second is when $1 ≤ d = o(n)$.
Type de document :
Communication dans un congrès
Conrado Martínez. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, pp.11-16, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184039
Contributeur : Coordination Episciences Iam <>
Soumis le : mercredi 12 août 2015 - 15:52:25
Dernière modification le : mercredi 10 mai 2017 - 17:39:21
Document(s) archivé(s) le : vendredi 13 novembre 2015 - 11:40:41

Fichier

dmAD0102.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184039, version 1

Collections

Citation

Margaret Archibald. Position of the maximum in a sequence with geometric distribution. Conrado Martínez. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, pp.11-16, 2005, DMTCS Proceedings. 〈hal-01184039〉

Partager

Métriques

Consultations de la notice

96

Téléchargements de fichiers

52