$K_{\ell}^{-}$-factors in graphs

Abstract : Let $K_ℓ^-$ denote the graph obtained from $K_ℓ$ by deleting one edge. We show that for every $γ >0$ and every integer $ℓ≥4$ there exists an integer $n_0=n_0(γ ,ℓ)$ such that every graph $G$ whose order $n≥n_0$ is divisible by $ℓ$ and whose minimum degree is at least $(\frac{ℓ^2-3ℓ+1}{/ ℓ(ℓ-2)}+γ )n$ contains a $K_ℓ^-$-factor, i.e. a collection of disjoint copies of $K_ℓ^-$ which covers all vertices of $G$. This is best possible up to the error term $γn$ and yields an approximate solution to a conjecture of Kawarabayashi.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.199-202, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184359
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 14 août 2015 - 11:37:20
Dernière modification le : jeudi 11 mai 2017 - 01:02:53
Document(s) archivé(s) le : dimanche 15 novembre 2015 - 10:59:58

Fichier

dmAE0139.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01184359, version 1

Collections

Citation

Daniela Kühn, Deryk Osthus. $K_{\ell}^{-}$-factors in graphs. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.199-202, 2005, DMTCS Proceedings. 〈hal-01184359〉

Partager

Métriques

Consultations de la notice

321

Téléchargements de fichiers

99