Excluded subposets in the Boolean lattice

Abstract : We are looking for the maximum number of subsets of an n-element set not containing 4 distinct subsets satisfying $A ⊂B, C ⊂B, C ⊂D$. It is proved that this number is at least the number of the $\lfloor \frac{n }{ 2}\rfloor$ -element sets times $1+\frac{2}{ n}$, on the other hand an upper bound is given with 4 replaced by the value 2.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.229-230, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184366
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 14 août 2015 - 11:37:42
Dernière modification le : jeudi 11 mai 2017 - 01:02:54
Document(s) archivé(s) le : dimanche 15 novembre 2015 - 11:01:45

Fichier

dmAE0145.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184366, version 1

Collections

Citation

Gyula O.H. Katona. Excluded subposets in the Boolean lattice. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.229-230, 2005, DMTCS Proceedings. 〈hal-01184366〉

Partager

Métriques

Consultations de la notice

286

Téléchargements de fichiers

40