Quadratic LYM-type inequalities for intersecting Sperner families

Abstract : Let $\mathcal{F}\subseteq 2^{[n]}$ be a intersecting Sperner family (i.e. $A \not\subset B, A \cap B \neq \emptyset$ for all $A,B \in \mathcal{F}$) with profile vector $(f_i)_{i=0 \ldots n}$ (i.e. $f_i=|\mathcal{F} \cap \binom{[n]}{i}|$). We present quadratic inequalities in the $f_i$'s which sharpen the previously known linear $\mathrm{LYM}$-type inequalities.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.37-40, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184375
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 17 août 2015 - 08:43:46
Dernière modification le : samedi 3 mars 2018 - 01:04:57
Document(s) archivé(s) le : mercredi 18 novembre 2015 - 10:34:43

Fichier

dmAE0108.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184375, version 1

Collections

Citation

Christian Bey. Quadratic LYM-type inequalities for intersecting Sperner families. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.37-40, 2005, DMTCS Proceedings. 〈hal-01184375〉

Partager

Métriques

Consultations de la notice

252

Téléchargements de fichiers

106