Every $3$-connected, essentially $11$-connected line graph is hamiltonian

Abstract : Thomassen conjectured that every $4$-connected line graph is hamiltonian. A vertex cut $X$ of $G$ is essential if $G-X$ has at least two nontrivial components. We prove that every $3$-connected, essentially $11$-connected line graph is hamiltonian. Using Ryjáček's line graph closure, it follows that every $3$-connected, essentially $11$-connected claw-free graph is hamiltonian.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.379-382, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184441
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 14 août 2015 - 14:59:03
Dernière modification le : jeudi 11 mai 2017 - 01:02:52
Document(s) archivé(s) le : dimanche 15 novembre 2015 - 11:12:53

Fichier

dmAE0173.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184441, version 1

Collections

Citation

Hong-Jian Lai, Yehong Shao, Ju Zhou, Hehui Wu. Every $3$-connected, essentially $11$-connected line graph is hamiltonian. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.379-382, 2005, DMTCS Proceedings. 〈hal-01184441〉

Partager

Métriques

Consultations de la notice

326

Téléchargements de fichiers

137