Why almost all satisfiable $k$-CNF formulas are easy

Abstract : Finding a satisfying assignment for a $k$-CNF formula $(k \geq 3)$, assuming such exists, is a notoriously hard problem. In this work we consider the uniform distribution over satisfiable $k$-CNF formulas with a linear number of clauses (clause-variable ratio greater than some constant). We rigorously analyze the structure of the space of satisfying assignments of a random formula in that distribution, showing that basically all satisfying assignments are clustered in one cluster, and agree on all but a small, though linear, number of variables. This observation enables us to describe a polynomial time algorithm that finds $\textit{whp}$ a satisfying assignment for such formulas, thus asserting that most satisfiable $k$-CNF formulas are easy (whenever the clause-variable ratio is greater than some constant). This should be contrasted with the setting of very sparse $k$-CNF formulas (which are satisfiable $\textit{whp}$), where experimental results show some regime of clause density to be difficult for many SAT heuristics. One explanation for this phenomena, backed up by partially non-rigorous analytical tools from statistical physics, is the complicated clustering of the solution space at that regime, unlike the more "regular" structure that denser formulas possess. Thus in some sense, our result rigorously supports this explanation.
Type de document :
Communication dans un congrès
Jacquet, Philippe. 2007 Conference on Analysis of Algorithms, AofA 07, 2007, Juan les Pins, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07), pp.95-108, 2007, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184786
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 17 août 2015 - 16:59:41
Dernière modification le : jeudi 11 mai 2017 - 01:02:52
Document(s) archivé(s) le : mercredi 18 novembre 2015 - 12:17:01

Fichier

dmAH0107.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184786, version 1

Collections

Citation

Amin Coja-Oghlan, Michael Krivelevich, Dan Vilenchik. Why almost all satisfiable $k$-CNF formulas are easy. Jacquet, Philippe. 2007 Conference on Analysis of Algorithms, AofA 07, 2007, Juan les Pins, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07), pp.95-108, 2007, DMTCS Proceedings. 〈hal-01184786〉

Partager

Métriques

Consultations de la notice

107

Téléchargements de fichiers

156