Cover time of a random graph with given degree sequence

Abstract : In this paper we establish the cover time of a random graph $G(\textbf{d})$ chosen uniformly at random from the set of graphs with vertex set $[n]$ and degree sequence $\textbf{d}$. We show that under certain restrictions on $\textbf{d}$, the cover time of $G(\textbf{d})$ is with high probability asymptotic to $\frac{d-1}{ d-2} \frac{\theta}{ d}n \log n$. Here $\theta$ is the average degree and $d$ is the $\textit{effective minimum degree}$. The effective minimum degree is the first entry in the sorted degree sequence which occurs order $n$ times.
Type de document :
Communication dans un congrès
Drmota, Michael and Gittenberger, Bernhard. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), pp.1-20, 2010, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01185603
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 20 août 2015 - 16:34:10
Dernière modification le : jeudi 19 avril 2018 - 14:24:03
Document(s) archivé(s) le : mercredi 26 avril 2017 - 10:04:29

Fichier

dmAM0101.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01185603, version 1

Collections

Citation

Mohammed Abdullah, Colin Cooper, Alan Frieze. Cover time of a random graph with given degree sequence. Drmota, Michael and Gittenberger, Bernhard. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), pp.1-20, 2010, DMTCS Proceedings. 〈hal-01185603〉

Partager

Métriques

Consultations de la notice

89

Téléchargements de fichiers

132