Tropical secant graphs of monomial curves

Résumé : On construit et on étude un graphe plongé dans $\mathbb{R}^{n+1}$ paramétrisé par une suite strictement croissante de $n$ nombres entiers $\{ i_1, \ldots, i_n\}$, premiers entre eux. Ce graphe s'appelle $\textit{graphe tropical surface sécante}$. On montre que ce graphe est la tropicalisation d'une surface dans $\mathbb{C}^{n+1}$ paramétrisé par des binômes. On utilise ce graphe pour construire la tropicalisation de la première sécante d'une courbe monomiale ayant comme vecteur d'exponents $(0, i_1, \ldots, i_n)$. On représente cette variété tropicale pour un graphe balancé (le $\textit{graphe tropical sécante}$). La combinatoire qu'on utilise pour le calcul du degré de ces variétés sécantes classiques n'est pas triviale, et a été developpée par K. Ranestad. En utilisant des techniques de la géométrie tropicale, on donne des algorithmes qui calculent le degré (même le multidegré) et le polytope de Newton de la première sécante d'une courbe monomiale de $\mathbb{P}^4$.
Type de document :
Communication dans un congrès
Billey, Sara and Reiner, Victor. 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 2010, San Francisco, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), pp.669-680, 2010, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01186248
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 24 août 2015 - 15:44:51
Dernière modification le : mardi 7 mars 2017 - 15:11:34
Document(s) archivé(s) le : mercredi 25 novembre 2015 - 16:46:32

Fichier

dmAN0147.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01186248, version 1

Collections

Citation

María Angélica Cueto, Shaowei Lin. Tropical secant graphs of monomial curves. Billey, Sara and Reiner, Victor. 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 2010, San Francisco, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), pp.669-680, 2010, DMTCS Proceedings. 〈hal-01186248〉

Partager

Métriques

Consultations de la notice

55

Téléchargements de fichiers

187