Oriented diameter and rainbow connection number of a graph

Abstract : The oriented diameter of a bridgeless graph G is min diam(H) | H is a strang orientation of G. A path in an edge-colored graph G, where adjacent edges may have the same color, is called rainbow if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the smallest integer number k for which there exists a k-edge-coloring of G such that every two distinct vertices of G are connected by a rainbow path. In this paper, we obtain upper bounds for the oriented diameter and the rainbow connection number of a graph in terms of rad(G) and η(G), where rad(G) is the radius of G and η(G) is the smallest integer number such that every edge of G is contained in a cycle of length at most η(G). We also obtain constant bounds of the oriented diameter and the rainbow connection number for a (bipartite) graph G in terms of the minimum degree of G.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 3 (in progress) (3), pp.51--60
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01188907
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 31 août 2015 - 17:03:31
Dernière modification le : jeudi 28 septembre 2017 - 22:08:02
Document(s) archivé(s) le : mardi 1 décembre 2015 - 10:43:15

Fichier

dmtcs-16-3-3.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01188907, version 1

Collections

Citation

Xiaolong Huang, Hengzhe Li, Xueliang Li, Yuefang Sun. Oriented diameter and rainbow connection number of a graph. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 3 (in progress) (3), pp.51--60. 〈hal-01188907〉

Partager

Métriques

Consultations de la notice

56

Téléchargements de fichiers

368