Variance Reduction in Population-Based Optimization: Application to Unit Commitment

Jean-Joseph Christophe 1, 2 Jérémie Decock 1, 2 Jialin Liu 2, 1 Olivier Teytaud 1, 2
2 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : We consider noisy optimization and some traditional variance reduction techniques aimed at improving the convergence rate, namely (i) common random numbers (CRN), which is relevant for population-based noisy optimization and (ii) stratified sampling, which is relevant for most noisy optimization problems. We present artificial models of noise for which common random numbers are very efficient, and artificial models of noise for which common random numbers are detrimental. We then experiment on a desperately expensive unit commitment problem. As expected, stratified sampling is never detrimental. Nonetheless, in practice, common random numbers provided, by far, most of the improvement .
Type de document :
Communication dans un congrès
Stephane Bonnevay and Pierrick Legrand and Nicolas Montmarché and Evelyne Lutton and Marc Schoenauer. Artificial Evolution (EA2015), 2015, Lyon, France. 2015
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01194510
Contributeur : Olivier Teytaud <>
Soumis le : lundi 7 septembre 2015 - 10:35:10
Dernière modification le : jeudi 11 janvier 2018 - 06:22:14
Document(s) archivé(s) le : mardi 8 décembre 2015 - 10:48:27

Fichier

EAsource.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01194510, version 1

Citation

Jean-Joseph Christophe, Jérémie Decock, Jialin Liu, Olivier Teytaud. Variance Reduction in Population-Based Optimization: Application to Unit Commitment. Stephane Bonnevay and Pierrick Legrand and Nicolas Montmarché and Evelyne Lutton and Marc Schoenauer. Artificial Evolution (EA2015), 2015, Lyon, France. 2015. 〈hal-01194510〉

Partager

Métriques

Consultations de la notice

328

Téléchargements de fichiers

159