A combinatorial approach to products of Pisot substitutions

Abstract : We define a generic algorithmic framework to prove a pure discrete spectrum for the substitutive symbolic dynamical systems associated with some infinite families of Pisot substitutions. We focus on the families obtained as finite products of the three-letter substitutions associated with the multidimensional continued fraction algorithms of Brun and Jacobi–Perron. Our tools consist in a reformulation of some combinatorial criteria (coincidence conditions), in terms of properties of discrete plane generation using multidimensional (dual) substitutions. We also deduce some topological and dynamical properties of the Rauzy fractals, of the underlying symbolic dynamical systems, as well as some number-theoretical properties of the associated Pisot numbers.
Type de document :
Article dans une revue
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016, 36 (6), pp.1757-1794. 〈10.1017/etds.2014.141〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01196326
Contributeur : Anne Siegel <>
Soumis le : mercredi 9 septembre 2015 - 15:56:44
Dernière modification le : vendredi 14 septembre 2018 - 09:16:06

Lien texte intégral

Identifiants

Citation

Valérie Berthé, Jérémie Bourdon, Timo Jolivet, Anne Siegel. A combinatorial approach to products of Pisot substitutions. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016, 36 (6), pp.1757-1794. 〈10.1017/etds.2014.141〉. 〈hal-01196326〉

Partager

Métriques

Consultations de la notice

659