Coloring Rings in Species

Abstract : We present a generalization of the chromatic polynomial, and chromatic symmetric function, arising in the study of combinatorial species. These invariants are defined for modules over lattice rings in species. The primary examples are graphs and set partitions. For these new invariants, we present analogues of results regarding stable partitions, the bond lattice, the deletion-contraction recurrence, and the subset expansion formula. We also present two detailed examples, one related to enumerating subgraphs by their blocks, and a second example related to enumerating subgraphs of a directed graph by their strongly connected components.
Type de document :
Communication dans un congrès
Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.691-702, 2014, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01207543
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 1 octobre 2015 - 09:28:04
Dernière modification le : mercredi 18 octobre 2017 - 16:12:07
Document(s) archivé(s) le : samedi 2 janvier 2016 - 10:35:18

Fichier

dmAT0160.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01207543, version 1

Collections

Citation

Jacob White. Coloring Rings in Species. Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.691-702, 2014, DMTCS Proceedings. 〈hal-01207543〉

Partager

Métriques

Consultations de la notice

67

Téléchargements de fichiers

247