Partial categorification of Hopf algebras and representation theory of towers of \mathcalJ-trivial monoids

Abstract : This paper considers the representation theory of towers of algebras of $\mathcal{J} -trivial$ monoids. Using a very general lemma on induction, we derive a combinatorial description of the algebra and coalgebra structure on the Grothendieck rings $G_0$ and $K_0$. We then apply our theory to some examples. We first retrieve the classical Krob-Thibon's categorification of the pair of Hopf algebras QSym$/NCSF$ as representation theory of the tower of 0-Hecke algebras. Considering the towers of semilattices given by the permutohedron, associahedron, and Boolean lattices, we categorify the algebra and the coalgebra structure of the Hopf algebras $FQSym , PBT$ , and $NCSF$ respectively. Lastly we completely describe the representation theory of the tower of the monoids of Non Decreasing Parking Functions.
Type de document :
Communication dans un congrès
Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.741-752, 2014, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01207568
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 1 octobre 2015 - 09:28:34
Dernière modification le : mardi 23 janvier 2018 - 10:22:31
Document(s) archivé(s) le : samedi 2 janvier 2016 - 10:49:15

Fichier

dmAT0164.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01207568, version 1

Citation

Aladin Virmaux. Partial categorification of Hopf algebras and representation theory of towers of \mathcalJ-trivial monoids. Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.741-752, 2014, DMTCS Proceedings. 〈hal-01207568〉

Partager

Métriques

Consultations de la notice

93

Téléchargements de fichiers

89