Skip to Main content Skip to Navigation
Conference papers

An equivariant rim hook rule for quantum cohomology of Grassmannians

Abstract : A driving question in (quantum) cohomology of flag varieties is to find non-recursive, positive combinatorial formulas for expressing the quantum product in a particularly nice basis, called the Schubert basis. Bertram, Ciocan-Fontanine and Fulton provide a way to compute quantum products of Schubert classes in the Grassmannian of $k$-planes in complex $n$-space by doing classical multiplication and then applying a combinatorial rimhook rule which yields the quantum parameter. In this paper, we provide a generalization of this rim hook rule to the setting in which there is also an action of the complex torus. Combining this result with Knutson and Tao's puzzle rule provides an effective algorithm for computing the equivariant quantum Littlewood-Richardson coefficients. Interestingly, this rule requires a specialization of torus weights that is tantalizingly similar to maps in affine Schubert calculus.
Complete list of metadata

Cited literature [14 references]  Display  Hide  Download
Contributor : Coordination Episciences Iam Connect in order to contact the contributor
Submitted on : Thursday, October 1, 2015 - 9:28:54 AM
Last modification on : Tuesday, October 19, 2021 - 11:03:13 AM
Long-term archiving on: : Saturday, January 2, 2016 - 10:43:05 AM


Publisher files allowed on an open archive




Elizabeth Beazley, Anna Bertiger, Kaisa Taipale. An equivariant rim hook rule for quantum cohomology of Grassmannians. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. pp.23-36, ⟨10.46298/dmtcs.2377⟩. ⟨hal-01207588⟩



Record views


Files downloads