Illustration of iterative linear solver behavior on simple 1D and 2D problems

Nicolas Ray 1 Dmitry Sokolov 1
1 ALICE - Geometry and Lighting
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : In geometry processing, numerical optimization methods often involve solving sparse linear systems of equations. These linear systems have a structure that strongly resembles to adjacency graphs of the underlying mesh. We observe how classic linear solvers behave on this specific type of problems. For the sake of simplicity, we minimise either the squared gradient or the squared Laplacian, evaluated by finite differences on a regular 1D or 2D grid. We observed the evolution of the solution for both energies, in 1D and 2D, and with different solvers: Jacobi, Gauss-Seidel, SSOR (Symmetric successive over-relaxation) and CG (conjugate gradient [She94]). Plotting results at different iterations allows to have an intuition of the behavior of these classic solvers.
Type de document :
[Research Report] LORIA. 2015
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger
Contributeur : Sokolov Dmitry <>
Soumis le : lundi 5 octobre 2015 - 10:01:33
Dernière modification le : jeudi 11 janvier 2018 - 06:25:23
Document(s) archivé(s) le : mercredi 6 janvier 2016 - 10:22:40


Fichiers produits par l'(les) auteur(s)


Domaine public


  • HAL Id : hal-01211410, version 1
  • ARXIV : 1510.01118



Nicolas Ray, Dmitry Sokolov. Illustration of iterative linear solver behavior on simple 1D and 2D problems. [Research Report] LORIA. 2015. 〈hal-01211410〉



Consultations de la notice


Téléchargements de fichiers