Fast, uniform, and compact scalar multiplication for elliptic curves and genus 2 Jacobians with applications to signature schemes

Abstract : We give a general framework for uniform, constant-time one-and two-dimensional scalar multiplication algorithms for elliptic curves and Jacobians of genus 2 curves that operate by projecting to the x-line or Kummer surface, where we can exploit faster and more uniform pseudomultiplication, before recovering the proper " signed " output back on the curve or Jacobian. This extends the work of López and Dahab, Okeya and Sakurai, and Brier and Joye to genus 2, and also to two-dimensional scalar multiplication. Our results show that many existing fast pseudomultiplication implementations (hitherto limited to applications in Diffie–Hellman key exchange) can be wrapped with simple and efficient pre-and post-computations to yield competitive full scalar multiplication algorithms, ready for use in more general discrete logarithm-based cryptosystems, including signature schemes. This is especially interesting for genus 2, where Kummer surfaces can outperform comparable elliptic curve systems. As an example, we construct an instance of the Schnorr signature scheme driven by Kummer surface arithmetic.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01214259
Contributeur : Benjamin Smith <>
Soumis le : lundi 19 octobre 2015 - 17:30:18
Dernière modification le : jeudi 11 janvier 2018 - 06:19:44
Document(s) archivé(s) le : mercredi 20 janvier 2016 - 14:50:26

Fichiers

recovery.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-01214259, version 2
  • ARXIV : 1510.03174

Citation

Ping Ngai Chung, Craig Costello, Benjamin Smith. Fast, uniform, and compact scalar multiplication for elliptic curves and genus 2 Jacobians with applications to signature schemes. 2015. 〈hal-01214259v2〉

Partager

Métriques

Consultations de la notice

319

Téléchargements de fichiers

126