Path tableaux and combinatorial interpretations of immanants for class functions on $S_n$

Résumé : Soit $χ ^λ$ le caractère irréductible de $S_n$ qui correspond à la partition λ de l'entier n, ou de manière équivalente, la préimage de la fonction de Schur $s_λ$ par l'application caractéristique de Frobenius. Soit $\phi ^λ$ la fonction $S_n →ℂ$ qui est la préimage de la fonction symétrique monomiale m_λ . La valeur du caractère irréductible immanent $Imm_λ {(x)} = ∑_w ∈S_n χ ^λ (w) x_1,w_1 ⋯x_n,w_n$ est non négative pour chaque matrice totalement non négative. Nous donnons une interprétation combinatoire de la valeur $Imm_λ (A)$ lorsque $λ$ est une partition en équerre. Stembridge a conjecturé que la valeur de l'immanent monomial $Imm_{{\phi} ^λ} (x) = ∑_w ∈S_n φ ^λ (w) x_1,w_1 ⋯x_n,w_n$ de $\phi ^λ$ est elle aussi non négative pour chaque matrice totalement non négative. Nous confirmons cette conjecture quand λ satisfait $λ _1 ≤2$, et nous donnons une interprétation combinatoire de $Imm_{{\phi} ^λ} (A)$ dans ce cas.
Type de document :
Communication dans un congrès
Bousquet-Mélou, Mireille and Wachs, Michelle and Hultman, Axel. 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), pp.233-244, 2011, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01215097
Contributeur : Coordination Episciences Iam <>
Soumis le : mardi 13 octobre 2015 - 15:06:43
Dernière modification le : mardi 7 mars 2017 - 15:14:41
Document(s) archivé(s) le : jeudi 27 avril 2017 - 00:23:57

Fichier

dmAO0122.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01215097, version 1

Collections

Citation

Sam Clearman, Brittany Shelton, Mark Skandera. Path tableaux and combinatorial interpretations of immanants for class functions on $S_n$. Bousquet-Mélou, Mireille and Wachs, Michelle and Hultman, Axel. 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), pp.233-244, 2011, DMTCS Proceedings. 〈hal-01215097〉

Partager

Métriques

Consultations de la notice

115

Téléchargements de fichiers

64