Application of LS-SVM and Variable Selection Methods on Predicting SSC of Nanfeng Mandarin Fruit

Abstract : The objective of this research was to investigate the performance of LS-SVM combined with several variable selection methods to assess soluble solids content (SSC) of Nanfeng mandarin fruit. Visible/near infrared (Vis/NIR) diffuse reflectance spectra of samples were acquired by a QualitySpec spectrometer in the wavelength range of 350~1800 nm. Four variable selection methods were conducted to select informative variables for SSC, and least squares-support vector machine (LS-SVM) with radial basis function (RBF) kernel was used develop calibration models. The results indicate that four variable selection methods are useful and effective to select informative variables, and the results of LS-SVM with these variable selection methods are comparable to the results of full-spectrum partial least squares (PLS). Genetic algorithm (GA) combined with successive projections algorithm (SPA) is the best variable selection method among these four methods. The correlation coefficients and RMSEs in LS-SVM with GA-SPA model for calibration, validation and prediction sets are 0.935, 0.560%, 0.912, 0.631% and 0.933, 0.594%, respectively.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 7th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2013, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-419 (Part I), pp.249-262, 2014, Computer and Computing Technologies in Agriculture VII. 〈10.1007/978-3-642-54344-9_31〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01220926
Contributeur : Hal Ifip <>
Soumis le : mardi 27 octobre 2015 - 10:11:05
Dernière modification le : mercredi 17 janvier 2018 - 10:43:34
Document(s) archivé(s) le : jeudi 28 janvier 2016 - 10:35:21

Fichier

978-3-642-54344-9_31_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Tong Sun, Wenli Xu, Tian Hu, Muhua Liu. Application of LS-SVM and Variable Selection Methods on Predicting SSC of Nanfeng Mandarin Fruit. Daoliang Li; Yingyi Chen. 7th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2013, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-419 (Part I), pp.249-262, 2014, Computer and Computing Technologies in Agriculture VII. 〈10.1007/978-3-642-54344-9_31〉. 〈hal-01220926〉

Partager

Métriques

Consultations de la notice

79

Téléchargements de fichiers

20