Estimating Biophysical Parameters from BOLD Signals through Evolutionary-Based Optimization

Abstract : Physiological and biophysical models have been proposed to link neural activity to the Blood Oxygen Level-Dependent (BOLD) signal in functional MRI (fMRI). They rely on a set of parameter values that cannot always be extracted from the literature. Their estimation is challenging because there are more than 10 potentially interesting parameters involved in non-linear equations and whose interactions may result in identifiability issues. However, the availability of statistical prior knowledge on these parameters can greatly simplify the estimation task. In this work we focus on the extended Balloon model and propose the estimation of 15 parameters using an Evolutionary Computation (EC) global search method. To combine both the ability to escape local optima and to incorporate prior knowledge, we derive the EC objective function from Bayesian modeling. This novel method provides promising results on a challenging real fMRI data set involving rats with epileptic activity and compares favorably with the conventional Expectation Maximization Gauss-Newton approach.
Type de document :
Communication dans un congrès
18th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI’15), Oct 2015, Munich, Germany. Springer, 9350 (Part II), pp.528-535, 2015, Lecture Notes in Computer Science. <10.1007/978-3-319-24571-3_63>
Liste complète des métadonnées


https://hal.inria.fr/hal-01221126
Contributeur : Pablo Mesejo Santiago <>
Soumis le : mardi 27 octobre 2015 - 14:41:50
Dernière modification le : samedi 11 février 2017 - 01:04:43
Document(s) archivé(s) le : jeudi 28 janvier 2016 - 10:51:58

Fichier

paper1072.v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pablo Mesejo, Sandrine Saillet, Olivier David, Christian Bénar, Jan M. Warnking, et al.. Estimating Biophysical Parameters from BOLD Signals through Evolutionary-Based Optimization. 18th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI’15), Oct 2015, Munich, Germany. Springer, 9350 (Part II), pp.528-535, 2015, Lecture Notes in Computer Science. <10.1007/978-3-319-24571-3_63>. <hal-01221126>

Partager

Métriques

Consultations de
la notice

349

Téléchargements du document

79