Fourth order energy-preserving locally implicit time discretization for linear wave equations

Juliette Chabassier 1, 2 Sébastien Imperiale 3
2 Magique 3D - Advanced 3D Numerical Modeling in Geophysics
LMAP - Laboratoire de Mathématiques et de leurs Applications [Pau], Inria Bordeaux - Sud-Ouest
3 M3DISIM - Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine
LMS - Laboratoire de mécanique des solides, Inria Saclay - Ile de France
Abstract : A family of fourth order coupled implicit-explicit time schemes is presented as a special case of fourth order coupled implicit schemes for linear wave equations. The domain of interest is decomposed into several regions where different fourth order time discretization are used, chosen among a family of implicit or explicit fourth order schemes. The coupling is based on a Lagrangian formulation on the boundaries between the several non conforming meshes of the regions. A global discrete energy is shown to be preserved and leads to global fourth order consistency in time. Numerical results in 1d and 2d for the acoustic and elastodynamics equations illustrate the good behavior of the schemes and their potential for the simulation of realistic highly heterogeneous media or strongly refined geometries, for which using everywhere an explicit scheme can be extremely penalizing. Accuracy up to fourth order reduces the numerical dispersion inherent to implicit methods used with a large time step, and makes this family of schemes attractive compared to second order accurate methods.
Type de document :
Article dans une revue
International Journal for Numerical Methods in Engineering, Wiley, 2015, 〈10.1002/nme.5130〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01222072
Contributeur : Sébastien Imperiale <>
Soumis le : jeudi 29 octobre 2015 - 14:30:52
Dernière modification le : jeudi 10 mai 2018 - 02:02:43
Document(s) archivé(s) le : vendredi 28 avril 2017 - 08:36:12

Fichier

ChaImpHal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Juliette Chabassier, Sébastien Imperiale. Fourth order energy-preserving locally implicit time discretization for linear wave equations. International Journal for Numerical Methods in Engineering, Wiley, 2015, 〈10.1002/nme.5130〉. 〈hal-01222072〉

Partager

Métriques

Consultations de la notice

594

Téléchargements de fichiers

159