Entropy-based Latent Structured Output Prediction

Abstract : Recently several generalizations of the popular latent structural SVM framework have been proposed in the literature. Broadly speaking, the generalizations can be divided into two categories: (i) those that predict the output variables while either marginalizing the latent variables or estimating their most likely values; and (ii) those that predict the output variables by minimizing an entropy-based uncertainty measure over the latent space. In order to aid their application in computer vision, we study these generalizations with the aim of identifying their strengths and weaknesses. To this end, we propose a novel prediction criterion that includes as special cases all previous prediction criteria that have been used in the literature. Specifically, our framework's prediction criterion minimizes the Aczél and Dar oczy entropy of the output. This in turn allows us to design a learning objective that provides a unified framework (UF) for latent structured prediction. We develop a single optimization algorithm and empirically show that it is as effective as the more complex approaches that have been previously employed for latent structured prediction. Using this algorithm, we provide empirical evidence that lends support to prediction via the minimization of the latent space uncertainty.
Type de document :
Communication dans un congrès
International Conference on Computer Vision (ICCV), Dec 2015, Santiago, Chile. 2015
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

Contributeur : M. Pawan Kumar <>
Soumis le : mardi 3 novembre 2015 - 17:21:27
Dernière modification le : jeudi 7 février 2019 - 17:29:19
Document(s) archivé(s) le : jeudi 4 février 2016 - 11:31:00


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01223968, version 1


Diane Bouchacourt, Sebastian Nowozin, M. Pawan Kumar. Entropy-based Latent Structured Output Prediction. International Conference on Computer Vision (ICCV), Dec 2015, Santiago, Chile. 2015. 〈hal-01223968〉



Consultations de la notice


Téléchargements de fichiers