The critical surface fugacity for self-avoiding walks on a rotated honeycomb lattice

Abstract : In a recent paper with Bousquet-Mélou, de Gier, Duminil-Copin and Guttmann (2012), we proved that a model of self-avoiding walks on the honeycomb lattice, interacting with an impenetrable surface, undergoes an adsorption phase transition when the surface fugacity is 1+√2. Our proof used a generalisation of an identity obtained by Duminil-Copin and Smirnov (2012), and confirmed a conjecture of Batchelor and Yung (1995). Here we consider a similar model of self-avoiding walk adsorption on the honeycomb lattice, but with the impenetrable surface placed at a right angle to the previous orientation. For this model there also exists a conjecture for the critical surface fugacity, made by Batchelor, Bennett-Wood and Owczarek (1998). We adapt the methods of the earlier paper to this setting in order to prove the critical surface fugacity, but have to deal with several subtle complications which arise. This article is an abbreviated version of a paper of the same title, currently being prepared for submission.
Type de document :
Communication dans un congrès
Alain Goupil and Gilles Schaeffer. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), pp.635-646, 2013, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01229668
Contributeur : Alain Monteil <>
Soumis le : mardi 17 novembre 2015 - 10:19:37
Dernière modification le : jeudi 11 janvier 2018 - 06:17:32
Document(s) archivé(s) le : jeudi 18 février 2016 - 11:34:11

Fichier

dmAS0154.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01229668, version 1

Collections

Citation

Nicholas R. Beaton. The critical surface fugacity for self-avoiding walks on a rotated honeycomb lattice. Alain Goupil and Gilles Schaeffer. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), pp.635-646, 2013, DMTCS Proceedings. 〈hal-01229668〉

Partager

Métriques

Consultations de la notice

78

Téléchargements de fichiers

187