Weighted partitions

Abstract : In this extended abstract we consider the poset of weighted partitions Π _n^w, introduced by Dotsenko and Khoroshkin in their study of a certain pair of dual operads. The maximal intervals of Π _n^w provide a generalization of the lattice Π _n of partitions, which we show possesses many of the well-known properties of Π _n. In particular, we prove these intervals are EL-shellable, we compute the Möbius invariant in terms of rooted trees, we find combinatorial bases for homology and cohomology, and we give an explicit sign twisted S_n-module isomorphism from cohomology to the multilinear component of the free Lie algebra with two compatible brackets. We also show that the characteristic polynomial of Π _n^w has a nice factorization analogous to that of Π _n.
Type de document :
Communication dans un congrès
Alain Goupil and Gilles Schaeffer. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), pp.1029-1040, 2013, DMTCS Proceedings
Liste complète des métadonnées

https://hal.inria.fr/hal-01229690
Contributeur : Alain Monteil <>
Soumis le : mardi 17 novembre 2015 - 10:20:00
Dernière modification le : mardi 7 mars 2017 - 15:23:22
Document(s) archivé(s) le : jeudi 18 février 2016 - 11:39:21

Fichier

dmAS0187.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01229690, version 1

Collections

Citation

Rafael González S. D'León, Michelle L. Wachs. Weighted partitions. Alain Goupil and Gilles Schaeffer. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), pp.1029-1040, 2013, DMTCS Proceedings. 〈hal-01229690〉

Partager

Métriques

Consultations de la notice

21

Téléchargements de fichiers

250