On Symmetric Norm Inequalities And Hermitian Block-Matrices - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

On Symmetric Norm Inequalities And Hermitian Block-Matrices

(1)
1

Abstract

The main purpose of this paper is to englobe some new and known types of Hermitian block-matrices $M=\begin{pmatrix} A & X\\ {X^*} & B\end{pmatrix}$ satisfying or not the inequality $\|M\|\le \|A+B\|$ for all symmetric norms. For positive definite block-matrices another inequality is established and it is shown that it can be sharper (for some symmetric norms) than the following holding inequality $\|M\|\le \|A\|+\|B\|$.
Fichier principal
Vignette du fichier
matrix.pdf (88.88 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01231860 , version 1 (21-11-2015)
hal-01231860 , version 2 (22-11-2015)
hal-01231860 , version 3 (27-05-2017)

Identifiers

Cite

Antoine Mhanna. On Symmetric Norm Inequalities And Hermitian Block-Matrices. 2016. ⟨hal-01231860v3⟩

Collections

INSMI
387 View
638 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More