Bipartite Matching Heuristics with Quality Guarantees on Shared Memory Parallel Computers

Abstract : We propose two heuristics for the bipartite matching problem that are amenable to shared-memory parallelization. The first heuristic is very intriguing from parallelization perspective. It has no significant algorithmic synchronization overhead and no conflict resolution is needed across threads. We show that this heuristic has an approximation ratio of around 0.632. The second heuristic is designed to obtain a larger matching by employing the well-known Karp-Sipser heuristic on a judiciously chosen subgraph of the original graph. We show that the Karp-Sipser heuristic always finds a maximum cardinality matching in the chosen subgraph. Although the Karp-Sipser heuristic is hard to parallelize for general graphs, we exploit the structure of the selected subgraphs to propose a specialized implementation which demonstrates a very good scalability. Based on our experiments and theoretical evidence, we conjecture that this second heuristic obtains matchings with cardinality of at least 0.866 of the maximum cardinality. We discuss parallel implementations of the proposed heuristics on shared memory systems. Experimental results, for demonstrating speed-ups and verifying the theoretical results in practice, are provided.
Type de document :
Communication dans un congrès
28th IEEE International Parallel & Distributed Processing Symposium (IPDPS), May 2014, Phoenix, Arizona, United States. 2014, 〈10.1109/IPDPS.2014.63〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01235162
Contributeur : Equipe Roma <>
Soumis le : samedi 28 novembre 2015 - 16:29:10
Dernière modification le : vendredi 15 juin 2018 - 01:19:35
Document(s) archivé(s) le : samedi 29 avril 2017 - 00:37:45

Fichier

oneOutMatching.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Fanny Dufossé, Kamer Kaya, Bora Uçar. Bipartite Matching Heuristics with Quality Guarantees on Shared Memory Parallel Computers. 28th IEEE International Parallel & Distributed Processing Symposium (IPDPS), May 2014, Phoenix, Arizona, United States. 2014, 〈10.1109/IPDPS.2014.63〉. 〈hal-01235162〉

Partager

Métriques

Consultations de la notice

391

Téléchargements de fichiers

112