Thin-Slicing for Pose: Learning to Understand Pose without Explicit Pose Estimation

Suha Kwak 1, 2 Minsu Cho 1, 2 Ivan Laptev 1
1 WILLOW - Models of visual object recognition and scene understanding
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8548
Abstract : We address the problem of learning a pose-aware, compact embedding that projects images with similar human poses to be placed close-by in the embedding space. The embedding function is built on a deep convolutional network, and trained with triplet-based rank constraints on real image data. This architecture allows us to learn a robust representation that captures differences in human poses by effectively factoring out variations in clothing, background, and imaging conditions in the wild. For a variety of pose-related tasks, the proposed pose embedding provides a cost-efficient and natural alternative to explicit pose estimation, circumventing challenges of localizing body joints. We demonstrate the efficacy of the embedding on pose-based image retrieval and action recognition problems.
Type de document :
Communication dans un congrès
CVPR 2016 - IEEE Conference on Computer Vision and Pattern Recognition, Jun 2016, Las Vegas, United States. 2016
Liste complète des métadonnées

https://hal.inria.fr/hal-01242724
Contributeur : Suha Kwak <>
Soumis le : jeudi 5 janvier 2017 - 00:14:18
Dernière modification le : jeudi 11 janvier 2018 - 06:23:05
Document(s) archivé(s) le : jeudi 6 avril 2017 - 12:16:43

Fichier

kwak_cvpr16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01242724, version 2

Collections

Citation

Suha Kwak, Minsu Cho, Ivan Laptev. Thin-Slicing for Pose: Learning to Understand Pose without Explicit Pose Estimation. CVPR 2016 - IEEE Conference on Computer Vision and Pattern Recognition, Jun 2016, Las Vegas, United States. 2016. 〈hal-01242724v2〉

Partager

Métriques

Consultations de la notice

133

Téléchargements de fichiers

221