Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, EpiSciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Conference papers

Fast computation of shifted Popov forms of polynomial matrices via systems of modular polynomial equations

Vincent Neiger 1, 2 
1 ARIC - Arithmetic and Computing
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : We give a Las Vegas algorithm which computes the shifted Popov form of an $m \times m$ nonsingular polynomial matrix of degree $d$ in expected $\widetilde{\mathcal{O}}(m^\omega d)$ field operations, where $\omega$ is the exponent of matrix multiplication and $\widetilde{\mathcal{O}}(\cdot)$ indicates that logarithmic factors are omitted. This is the first algorithm in $\widetilde{\mathcal{O}}(m^\omega d)$ for shifted row reduction with arbitrary shifts. Using partial linearization, we reduce the problem to the case $d \le \lceil \sigma/m \rceil$ where $\sigma$ is the generic determinant bound, with $\sigma / m$ bounded from above by both the average row degree and the average column degree of the matrix. The cost above becomes $\widetilde{\mathcal{O}}(m^\omega \lceil \sigma/m \rceil)$, improving upon the cost of the fastest previously known algorithm for row reduction, which is deterministic. Our algorithm first builds a system of modular equations whose solution set is the row space of the input matrix, and then finds the basis in shifted Popov form of this set. We give a deterministic algorithm for this second step supporting arbitrary moduli in $\widetilde{\mathcal{O}}(m^{\omega-1} \sigma)$ field operations, where $m$ is the number of unknowns and $\sigma$ is the sum of the degrees of the moduli. This extends previous results with the same cost bound in the specific cases of order basis computation and M-Pad\'e approximation, in which the moduli are products of known linear factors.
Document type :
Conference papers
Complete list of metadata

Cited literature [37 references]  Display  Hide  Download
Contributor : Vincent Neiger Connect in order to contact the contributor
Submitted on : Thursday, May 12, 2016 - 11:08:39 AM
Last modification on : Monday, May 16, 2022 - 4:58:02 PM
Long-term archiving on: : Wednesday, November 16, 2016 - 2:31:45 AM


Files produced by the author(s)




Vincent Neiger. Fast computation of shifted Popov forms of polynomial matrices via systems of modular polynomial equations. 41st International Symposium on Symbolic and Algebraic Computation, Jul 2016, Waterloo, ON, Canada. ⟨10.1145/2930889.2930936⟩. ⟨hal-01266014v2⟩



Record views


Files downloads