Computing theta functions in quasi-linear time in genus 2 and above

Hugo Labrande 1, 2 Emmanuel Thomé 1
1 CARAMBA - Cryptology, arithmetic : algebraic methods for better algorithms
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : We outline an algorithm to compute θ(z, τ) in genus 2 in quasi-optimal time, borrowing ideas from the algorithm for theta constants and the one for θ(z, τ) in genus 1. Our implementation shows a large speedup for precisions as low as a few thousand decimal digits. We also lay out a strategy to generalize this algorithm to genus g.
Type de document :
Article dans une revue
LMS Journal of Computation and Mathematics, London Mathematical Society, 2016, Special issue: Algorithmic Number Theory Symposium XII, 19 (A), pp.163-177. <10.1112/S1461157016000309>
Liste complète des métadonnées


https://hal.inria.fr/hal-01277169
Contributeur : Hugo Labrande <>
Soumis le : lundi 22 février 2016 - 11:41:50
Dernière modification le : vendredi 9 décembre 2016 - 11:51:27
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 00:20:13

Fichier

hal_theta_genus2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Hugo Labrande, Emmanuel Thomé. Computing theta functions in quasi-linear time in genus 2 and above. LMS Journal of Computation and Mathematics, London Mathematical Society, 2016, Special issue: Algorithmic Number Theory Symposium XII, 19 (A), pp.163-177. <10.1112/S1461157016000309>. <hal-01277169>

Partager

Métriques

Consultations de
la notice

168

Téléchargements du document

71