Stochastic Finite Element Method for torso conductivity uncertainties quantification in electrocardiography inverse problem

Abstract : The purpose of this paper is to study the influence of errors and uncertainties of the input data, like the conductivity, on the electrocardiography imaging (ECGI) solution. In order to do that, we propose a new stochastic optimal control formulation, permitting to calculate the distribution of the electric potentiel on the heart from the measurement on the body surface. The discretization is done using stochastic Galerkin method allowing to separate random and deterministic variables. Then, the problem is discretized, in spatial part, using the finite element method and the polynomial chaos expansion in the stochastic part of the problem. The considered problem is solved using a conjugate gradient method where the gradient of the cost function is computed with an adjoint technique. The efficiency of this approach to solve the inverse problem and the usability to quantify the effect of conductivity uncertainties in the torso are demonstrated through a number of numerical simulations on a 2D analytical geometry and on a 2D cross section of a real torso.
Type de document :
Article dans une revue
Mathematical Modelling of Natural Phenomena, EDP Sciences, 2016, 11 (2), pp.1-19. 〈10.1051/mmnp/201611201〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01289144
Contributeur : Nejib Zemzemi <>
Soumis le : mercredi 16 mars 2016 - 11:11:34
Dernière modification le : jeudi 11 janvier 2018 - 06:23:41
Document(s) archivé(s) le : vendredi 17 juin 2016 - 10:25:56

Fichier

mmnp-format-fikal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Rajae Aboulaich, Najib Fikal, El Mahdi El Guarmah, Nejib Zemzemi. Stochastic Finite Element Method for torso conductivity uncertainties quantification in electrocardiography inverse problem. Mathematical Modelling of Natural Phenomena, EDP Sciences, 2016, 11 (2), pp.1-19. 〈10.1051/mmnp/201611201〉. 〈hal-01289144〉

Partager

Métriques

Consultations de la notice

323

Téléchargements de fichiers

218