Parallel Differential Evolution approach for Cloud workflow placements under simultaneous optimization of multiple objectives

Abstract : The recent rapid expansion of Cloud computing facilities triggers an attendant challenge to facility providers and users for methods for optimal placement of workflows on distributed resources, under the often-contradictory impulses of minimizing makespan, energy consumption, and other metrics. Evolutionary Optimization techniques that from theoretical principles are guaranteed to provide globally optimum solutions, are among the most powerful tools to achieve such optimal placements. Multi-Objective Evolutionary algorithms by design work upon contradictory objectives, gradually evolving across generations towards a converged Pareto front representing optimal decision variables – in this case the mapping of tasks to resources on clusters. However the computation time taken by such algorithms for convergence makes them prohibitive for real time placements because of the adverse impact on makespan. This work describes parallelization, on the same cluster, of a Multi-Objective Differential Evolution method (NSDE-2) for optimization of workflow placement, and the attendant speedups that bring the implicit accuracy of the method into the realm of practical utility. Experimental validation is performed on a real-life testbed using diverse Cloud traces. The solutions under different scheduling policies demonstrate significant reduction in energy consumption with some improvement in makespan.
Type de document :
Communication dans un congrès
Congress on Evolutionary Computation (IEEE CEC 2016), Jul 2016, Vancouver, Canada
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01289176
Contributeur : Daniel Balouek-Thomert <>
Soumis le : vendredi 10 juin 2016 - 15:05:22
Dernière modification le : vendredi 20 avril 2018 - 15:44:26

Fichier

CEC2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01289176, version 2

Citation

Daniel Balouek-Thomert, Arya K. Bhattacharya, Eddy Caron, Karunakar Gadireddy, Laurent Lefèvre. Parallel Differential Evolution approach for Cloud workflow placements under simultaneous optimization of multiple objectives. Congress on Evolutionary Computation (IEEE CEC 2016), Jul 2016, Vancouver, Canada. 〈hal-01289176v2〉

Partager

Métriques

Consultations de la notice

559

Téléchargements de fichiers

229