Two migration methods based on paraxial equations in a 3D heterogeneous medium

Abstract : We review recent work on paraxial equation based migration methods for 3D heterogeneous media. Two different methods are presented: one deals directly with the classical paraxial equations, by solving a linear system at each step in depth. The other method derives new paraxial equations that lend themselves to splitting in the lateral variables, without losing either accuracy or isotropy. We also show how to incorporate Berenger's perfectly matched layers in this framework. We detail the discretization schemes, both for the full paraxial equations, and for the newly derived equations.
Type de document :
Communication dans un congrès
Siamak Hassanzadeh. Mathematical Methods in Geophysical Imaging III, 1995, San Diego, United States. pp.12, 〈http://proceedings.spiedigitallibrary.org/volume.aspx?volumeid=11698〉. 〈10.1117/12.218503〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01316194
Contributeur : Michel Kern <>
Soumis le : dimanche 15 mai 2016 - 19:30:59
Dernière modification le : mercredi 18 mai 2016 - 01:09:34
Document(s) archivé(s) le : mercredi 16 novembre 2016 - 05:45:15

Fichiers

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Eliane Bécache, Francis Collino, Michel Kern, Patrick Joly. Two migration methods based on paraxial equations in a 3D heterogeneous medium. Siamak Hassanzadeh. Mathematical Methods in Geophysical Imaging III, 1995, San Diego, United States. pp.12, 〈http://proceedings.spiedigitallibrary.org/volume.aspx?volumeid=11698〉. 〈10.1117/12.218503〉. 〈hal-01316194〉

Partager

Métriques

Consultations de la notice

180

Téléchargements de fichiers

63