Harvesting in Stochastic Environments: Optimal Policies in a Relaxed Model

Abstract : This paper examines the objective of optimally harvesting a single species in a stochastic environment. This problem has previously been analyzed in [1] using dynamic programming techniques and, due to the natural payoff structure of the price rate function (the price decreases as the population increases), no optimal harvesting policy exists. This paper establishes a relaxed formulation of the harvesting model in such a manner that existence of an optimal relaxed harvesting policy can not only be proven but also identified. The analysis imbeds the harvesting problem in an infinite-dimensional linear program over a space of occupation measures in which the initial position enters as a parameter and then analyzes an auxiliary problem having fewer constraints. In this manner upper bounds are determined for the optimal value (with the given initial position); these bounds depend on the relation of the initial population size to a specific target size. The more interesting case occurs when the initial population exceeds this target size; a new argument is required to obtain a sharp upper bound. Though the initial population size only enters as a parameter, the value is determined in a closed-form functional expression of this parameter.
Type de document :
Communication dans un congrès
Dietmar Hömberg; Fredi Tröltzsch. 25th System Modeling and Optimization (CSMO), Sep 2011, Berlin, Germany. Springer, IFIP Advances in Information and Communication Technology, AICT-391, pp.197-206, 2013, System Modeling and Optimization. 〈10.1007/978-3-642-36062-6_20〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01347538
Contributeur : Hal Ifip <>
Soumis le : jeudi 21 juillet 2016 - 11:18:35
Dernière modification le : jeudi 21 juillet 2016 - 11:48:15

Fichier

978-3-642-36062-6_20_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Richard Stockbridge, Chao Zhu. Harvesting in Stochastic Environments: Optimal Policies in a Relaxed Model. Dietmar Hömberg; Fredi Tröltzsch. 25th System Modeling and Optimization (CSMO), Sep 2011, Berlin, Germany. Springer, IFIP Advances in Information and Communication Technology, AICT-391, pp.197-206, 2013, System Modeling and Optimization. 〈10.1007/978-3-642-36062-6_20〉. 〈hal-01347538〉

Partager

Métriques

Consultations de la notice

48

Téléchargements de fichiers

14