Finite element method for a space-fractional anti-diffusive equation

Afaf Bouharguane 1, 2
2 MEMPHIS - Modeling Enablers for Multi-PHysics and InteractionS
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
Abstract : The numerical solution of a nonlinear and space-fractional anti-diffusive equation used to model dune morphodynamics is considered. Spatial discretization is effected using a finite element method whereas the Crank-Nicolson scheme is used for temporal discretization. The fully discrete scheme is analyzed to determine stability condition and also to obtain error estimates for the approximate solution. Numerical examples are presented to illustrate convergence results.
Document type :
Reports
Complete list of metadatas

Cited literature [14 references]  Display  Hide  Download

https://hal.inria.fr/hal-01358184
Contributor : Afaf Bouharguane <>
Submitted on : Wednesday, August 31, 2016 - 11:33:44 AM
Last modification on : Thursday, January 11, 2018 - 6:27:21 AM
Long-term archiving on : Friday, December 2, 2016 - 12:11:58 AM

Files

FEM.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01358184, version 1
  • ARXIV : 1608.08830

Collections

Citation

Afaf Bouharguane. Finite element method for a space-fractional anti-diffusive equation. [Research Report] Institut de Mathématiques de Bordeaux; INRIA Bordeaux, équipe MEMPHIS. 2016. ⟨hal-01358184⟩

Share

Metrics

Record views

346

Files downloads

194