Partitioned conditional generalized linear models for categorical responses

Abstract : In categorical data analysis, several regression models have been proposed for hierarchically structured responses, such as the nested logit model, the two-step model or the partitioned conditional model for partially ordered set. The specifications of these models are heterogeneous and they have been formally defined for only two or three levels in the hierarchy. Here, we introduce the class of partitioned conditional generalized linear models (PCGLMs) that encompasses all these models and is defined for any number of levels in the hierarchy. The hierarchical structure of these models is fully specified by a partition tree of categories. Using the genericity of the recently introduced (r, F, Z) specification of generalized linear models (GLMs) for categorical responses, it is possible to use different link functions and explanatory variables for each partitioning step. PCGLMs thus constitute a very flexible framework for modelling hierarchically structured categorical responses including partially ordered responses.
Type de document :
Article dans une revue
Statistical Modelling, SAGE Publications, 2016, 16 (4), pp.297-321. 〈10.1177/1471082X16644874〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01361041
Contributeur : Christophe Godin <>
Soumis le : mardi 6 septembre 2016 - 17:57:35
Dernière modification le : mercredi 30 mai 2018 - 01:20:18

Identifiants

Citation

Jean Peyhardi, Catherine Trottier, Yann Guédon. Partitioned conditional generalized linear models for categorical responses. Statistical Modelling, SAGE Publications, 2016, 16 (4), pp.297-321. 〈10.1177/1471082X16644874〉. 〈hal-01361041〉

Partager

Métriques

Consultations de la notice

292