Prediction of Dissolved Oxygen Content in Aquaculture of Hyriopsis Cumingii Using Elman Neural Network

Abstract : Hyriopsis Cumingii is Chinese major fresh water pearl mussel, widely distributed in the southern provinces of China’s large and medium-sized freshwater lakes. In the management of Hyriopsis Cumingii ponds, dissolved oxygen (DO) is the key point to measure, predict and control. In this study, we analyzes the important factors for predicting dissolved oxygen of Hyriopsis Cumingii ponds, and finally chooses solar radiation(SR), water temperature(WT), wind speed(WS), PH and oxygen(DO) as six input parameters. In this paper, Elman neural networks were used to predict and forecast quantitative characteristics of water. As the dissolved oxygen in the outdoor pond is low controllability and scalability, this paper proposes a predicting model for dissolved oxygen. The true power and advantage of this method lie in its ability to (1) represent both linear and non-linear relationships and (2) learn these relationships directly from the data being modeled. The study focuses on Singapore coastal waters. The Elman NN model is built for quick assessment and forecasting of selected water quality variables at any location in the domain of interest. Experimental results show that: Elman neural network predicting model with good fitting ability, generalization ability, and high prediction accuracy, can better predict the changes of dissolved oxygen.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-370 (Part III), pp.508-518, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27275-2_57〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01361178
Contributeur : Hal Ifip <>
Soumis le : mardi 6 septembre 2016 - 17:17:11
Dernière modification le : mardi 6 septembre 2016 - 17:40:15
Document(s) archivé(s) le : mercredi 7 décembre 2016 - 13:23:00

Fichier

978-3-642-27275-2_57_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Shuangyin Liu, Mingxia Yan, Haijiang Tai, Longqin Xu, Daoliang Li. Prediction of Dissolved Oxygen Content in Aquaculture of Hyriopsis Cumingii Using Elman Neural Network. Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-370 (Part III), pp.508-518, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27275-2_57〉. 〈hal-01361178〉

Partager

Métriques

Consultations de la notice

237

Téléchargements de fichiers

51