Skip to Main content Skip to Navigation
New interface
Preprints, Working Papers, ...

Schertz style class invariants for quartic CM fields

Andreas Enge 1 Marco Streng 2 
1 LFANT - Lithe and fast algorithmic number theory
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
Abstract : A class invariant is a CM value of a modular function that lies in a certain unram-ified class field. We show that Siegel modular functions over $Q$ for $Γ^0 (N) ⊆ Sp_4 (Z)$yield class invariants under some splitting conditions on N. Small class invariants speed up constructions in explicit class field theory and public-key cryptography. Our results generalise results of Schertz's from elliptic curves to abelian varieties and from classical modular functions to Siegel modular functions.
Document type :
Preprints, Working Papers, ...
Complete list of metadata
Contributor : Andreas Enge Connect in order to contact the contributor
Submitted on : Friday, May 28, 2021 - 4:52:33 PM
Last modification on : Wednesday, February 2, 2022 - 3:53:55 PM


Files produced by the author(s)


  • HAL Id : hal-01377376, version 2



Andreas Enge, Marco Streng. Schertz style class invariants for quartic CM fields. 2016. ⟨hal-01377376v2⟩



Record views


Files downloads