Spike train analysis and Gibbs distributions

Abstract : Spikes in sensory neurons are conveyed collectively to the cortex using correlated binary patterns (in space and time) which constitute “the neural code”. Since patterns occur irregularly it is appropriate to characterize them using probabilistic descriptions or statistical models. Two major approaches attempt to characterize the spike train statistics: The Maximum Entropy Principle (MaxEnt) and Neuronal Network modeling (N.N). Remarkably, both approaches are related via the concept of Gibbs distributions. MaxEnt models are restricted to time-invariant Gibbs distributions , vi the underlying assumption of stationarity, but this concept extends to non-stationary statistics (not defined via entropy), allowing to handle as well statistics of N.N models and GLM with non-stationary dynamics. We show in this poster that, stationary N.N, GLMmodels and MaxEnt models are equivalent via an explicit mapping. This allows us, in particular, to interpret the so-called "effective interactions" of MaxEnt models in terms of “real connections” models.
Liste complète des métadonnées

Contributeur : Bruno Cessac <>
Soumis le : samedi 8 octobre 2016 - 13:13:01
Dernière modification le : jeudi 11 janvier 2018 - 16:48:50
Document(s) archivé(s) le : lundi 9 janvier 2017 - 12:17:54


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01378001, version 1



Rodrigo Cofre, Bruno Cessac. Spike train analysis and Gibbs distributions. Bernstein Conference 2016, Sep 2016, Berlin, Germany. 〈hal-01378001〉



Consultations de la notice


Téléchargements de fichiers