Discrete asymptotic equations for long wave propagation

Abstract : In this paper, we present a new systematic method to obtain some discrete numerical models for incompressible free-surface flows.The method consists in first discretizing the Euler equations with respect to one variable, keeping the other ones unchanged and thenperforming an asymptotic analysis on the resulting system. For the sake of simplicity, we choose to illustrate this method in the context of the Peregrine asymptotic regime, that is we propose an alternative numerical scheme for the so-called Peregrine equations.We then study the linear dispersion characteristics of our new scheme and present several numerical experiments to measure the relevance of the method.
Type de document :
Article dans une revue
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2016
Liste complète des métadonnées

https://hal.inria.fr/hal-01378612
Contributeur : Mathieu Colin <>
Soumis le : lundi 10 octobre 2016 - 14:59:25
Dernière modification le : jeudi 11 janvier 2018 - 06:27:21

Identifiants

  • HAL Id : hal-01378612, version 1

Collections

Citation

Stevan Bellec, Mathieu Colin, Mario Ricchiuto. Discrete asymptotic equations for long wave propagation. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2016. 〈hal-01378612〉

Partager

Métriques

Consultations de la notice

266