ReDyAl: A Dynamic Recommendation Algorithm based on Linked Data

Abstract : The Web of Data is an interconnected global dataspace in which discovering resources related to a given resource and recommend relevant ones is still an open research area. This work describes a new recommendation algorithm based on structured data published on the Web (Linked Data). The algorithm exploits existing relationships between resources by dynamically analyzing both the categories to which they belong to and their explicit references to other resources. A user study conducted to evaluate the algorithm showed that our algorithm provides more novel recommendations than other state-of-the-art algorithms and keeps a satisfying prediction accuracy. The algorithm has been applied in a mobile application to recommend movies by relying on DBpedia (the Linked Data version of Wikipedia), although it could be applied to other datasets on the Web of Data.
Type de document :
Communication dans un congrès
3rd Workshop on New Trends in Content-Based Recommender Systems co-located with ACM Conference on Recommender Systems (RecSys 2016), Sep 2016, Boston, United States. CEUR, 1673, 2016, New Trends in Content-Based Recommender Systems. 〈http://ceur-ws.org/Vol-1673/〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01379996
Contributeur : Oscar Rodríguez Rocha <>
Soumis le : mercredi 12 octobre 2016 - 12:13:31
Dernière modification le : mercredi 30 août 2017 - 01:10:43
Document(s) archivé(s) le : samedi 4 février 2017 - 19:46:12

Fichier

main_acm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01379996, version 1

Collections

Citation

Iacopo Vagliano, Cristhian Figueroa, Oscar Rodríguez Rocha, Marco Torchiano, Catherine Faron-Zucker, et al.. ReDyAl: A Dynamic Recommendation Algorithm based on Linked Data. 3rd Workshop on New Trends in Content-Based Recommender Systems co-located with ACM Conference on Recommender Systems (RecSys 2016), Sep 2016, Boston, United States. CEUR, 1673, 2016, New Trends in Content-Based Recommender Systems. 〈http://ceur-ws.org/Vol-1673/〉. 〈hal-01379996〉

Partager

Métriques

Consultations de
la notice

709

Téléchargements du document

106