Riemannian game dynamics - Inria - Institut national de recherche en sciences et technologies du numérique
Article Dans Une Revue Journal of Economic Theory Année : 2018

Riemannian game dynamics

Résumé

We study a class of evolutionary game dynamics defined by bal- ancing a gain determined by the game’s payoffs against a cost of motion that captures the difficulty with which the population moves between states. Costs of motion are represented by a Riemannian metric, i.e., a state-dependent inner product on the set of population states. The replicator dynamics and the (Euclidean) projection dynamics are the archetypal examples of the class we study. Like these representative dynamics, all Riemannian game dynamics satisfy certain basic desiderata, including positive correlation and global convergence in potential games. Moreover, when the underlying Riemannian metric satisfies a Hessian integrability condition, the resulting dynamics pre- serve many further properties of the replicator and projection dynamics. We examine the close connections between Hessian game dynamics and reinforce- ment learning in normal form games, extending and elucidating a well-known link between the replicator dynamics and exponential reinforcement learning.
Fichier principal
Vignette du fichier
GeometricDynamics.pdf (1.09 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01382281 , version 1 (09-10-2018)

Identifiants

Citer

Panayotis Mertikopoulos, William H. Sandholm. Riemannian game dynamics. Journal of Economic Theory, 2018, 177, pp.315-364. ⟨10.1016/j.jet.2018.06.002⟩. ⟨hal-01382281⟩
184 Consultations
219 Téléchargements

Altmetric

Partager

More