An Optimized Tag Recommender Algorithm in Folksonomy

Abstract : In the existing folksonomy system, users can be allowed to add any social tags to the resources, but tags are fuzzy and redundancy in semantic, which make it hard to obtain the required information for users. An optimized tag recommender algorithm is proposed to solve the problem in this paper. First, based on the motivation theory, the recommender system uses the model given to calculate the user retrieval motivation before searching information. Second, we use the results in first step to distinguish the user’s type and then cluster the resources tagged according to users who have the similar retrieval motivation with k-means++ algorithm and recommend the most relevant resources to users. The experimental results show that our proposed algorithm with user retrieval motivation can have higher accuracy and stability than traditional retrieval algorithms in folksonomy system.
Type de document :
Communication dans un congrès
Zhongzhi Shi; Zhaohui Wu; David Leake; Uli Sattler. 8th International Conference on Intelligent Information Processing (IIP), Oct 2014, Hangzhou, China. Springer, IFIP Advances in Information and Communication Technology, AICT-432, pp.47-56, 2014, Intelligent Information Processing VII. 〈10.1007/978-3-662-44980-6_6〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01383316
Contributeur : Hal Ifip <>
Soumis le : mardi 18 octobre 2016 - 14:52:48
Dernière modification le : mardi 18 octobre 2016 - 15:08:51

Fichier

978-3-662-44980-6_6_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jie Chen, Baohua Qiang, Yaoguang Wang, Peng Wang, Jun Huang. An Optimized Tag Recommender Algorithm in Folksonomy. Zhongzhi Shi; Zhaohui Wu; David Leake; Uli Sattler. 8th International Conference on Intelligent Information Processing (IIP), Oct 2014, Hangzhou, China. Springer, IFIP Advances in Information and Communication Technology, AICT-432, pp.47-56, 2014, Intelligent Information Processing VII. 〈10.1007/978-3-662-44980-6_6〉. 〈hal-01383316〉

Partager

Métriques

Consultations de la notice

19

Téléchargements de fichiers

18