On the Robustness of Multiscale Hybrid-Mixed Methods

Abstract : In this work we prove uniform convergence of the Multiscale Hybrid-Mixed (MHM for short) finite element method for second order elliptic problems with rough periodic coefficients. The MHM method is shown to avoid resonance errors without adopting oversampling techniques. In particular, we establish that the discretization error for the primal variable in the broken $H 1$ and $L $2 norms are $O(h + ε δ)$ and $O(h 2 + h ε δ)$, respectively, and for the dual variable is $O(h + ε δ)$ in the $H$(div; ·) norm, where $0 < δ ≤ 1/2$ (depending on regularity). Such results rely on sharpened asymptotic expansion error estimates for the elliptic models with prescribed Dirichlet, Neumann or mixed boundary conditions.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2016, pp.1 - 1. 〈10.1090/mcom/3108〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01394241
Contributeur : Frederic Valentin <>
Soumis le : mardi 8 novembre 2016 - 23:30:04
Dernière modification le : samedi 1 juillet 2017 - 01:03:45

Fichier

ParValVerf.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Diego Paredes, Frédéric Valentin, Henrique Versieux. On the Robustness of Multiscale Hybrid-Mixed Methods. Mathematics of Computation, American Mathematical Society, 2016, pp.1 - 1. 〈10.1090/mcom/3108〉. 〈hal-01394241〉

Partager

Métriques

Consultations de la notice

18

Téléchargements de fichiers

9