Correctly Rounded Arbitrary-Precision Floating-Point Summation

Vincent Lefèvre 1
1 ARIC - Arithmetic and Computing
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : We present a fast algorithm together with its low-level implementation of correctly rounded arbitrary-precision floating-point summation. The arithmetic is the one used by the GNU MPFR library: radix 2; no subnormals; each variable (each input and the output) has its own precision. We also give a worst-case complexity of this algorithm and describe how the implementation is tested.
Type de document :
Article dans une revue
IEEE Transactions on Computers, Institute of Electrical and Electronics Engineers, 2017, <10.1109/TC.2017.2690632>
Liste complète des métadonnées

https://hal.inria.fr/hal-01394289
Contributeur : Vincent Lefèvre <>
Soumis le : lundi 10 avril 2017 - 11:20:11
Dernière modification le : mardi 11 avril 2017 - 01:06:00

Fichier

ieeetc2017-mpfrsum-auth.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Vincent Lefèvre. Correctly Rounded Arbitrary-Precision Floating-Point Summation. IEEE Transactions on Computers, Institute of Electrical and Electronics Engineers, 2017, <10.1109/TC.2017.2690632>. <hal-01394289v2>

Partager

Métriques

Consultations de
la notice

61

Téléchargements du document

13