Skip to Main content Skip to Navigation

Subgraph Detection with Cues Using Belief Propagation

Abstract : We consider an Erdos-Renyi graph with $n$ nodes and edge probability $q$ that is embedded with a random subgraph of size $K$ with edge probabilities $p$ such that $p>q.$ We address the problem of detecting the subgraph nodes when only the graph edges are observed, along with some extra knowledge of a small fraction of subgraph nodes, called cued vertices or cues. We employ a local and distributed algorithm called belief propagation (BP). Recent works on subgraph detection without cues have shown that global maximum likelihood (ML) detection strictly outperforms BP in terms of asymptotic error rate, namely, there is a threshold condition that the subgraph parameters should satisfy below which BP fails in achieving asymptotically zero error, but ML succeeds. In contrast, we show that when the fraction of cues is strictly bounded away from zero, i.e., when there exists non-trivial side-information, BP achieves zero asymptotic error even below this threshold, thus approaching the performance of ML detection.
Complete list of metadatas
Contributor : Arun Kadavankandy <>
Submitted on : Wednesday, November 23, 2016 - 8:47:14 AM
Last modification on : Friday, January 18, 2019 - 4:15:24 PM
Document(s) archivé(s) le : Monday, March 27, 2017 - 9:13:45 AM


Files produced by the author(s)


  • HAL Id : hal-01394889, version 3
  • ARXIV : 1611.04847


Arun Kadavankandy, Konstantin Avrachenkov, Laura Cottatellucci, Sundaresan Rajesh. Subgraph Detection with Cues Using Belief Propagation. [Research Report] RR-8974, Inria Sophia Antipolis. 2016, pp.18. ⟨hal-01394889v3⟩



Record views


Files downloads