Averaging of highly-oscillatory transport equations

Abstract : In this paper, we develop a new strategy aimed at obtaining high-order asymp-totic models for transport equations with highly-oscillatory solutions. The technique relies upon recent developments averaging theory for ordinary differential equations, in particular normal form expansions in the vanishing parameter. Noteworthy, the result we state here also allows for the complete recovery of the exact solution from the asymptotic model. This is done by solving a companion transport equation that stems naturally from the change of variables underlying high-order averaging. Eventually, we apply our technique to the Vlasov equation with external electric and magnetic fields. Both constant and non-constant magnetic fields are envisaged, and asymptotic models already documented in the literature and re-derived using our methodology. In addition, it is shown how to obtain new high-order asymptotic models.
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01396685
Contributeur : Nicolas Crouseilles <>
Soumis le : lundi 14 novembre 2016 - 17:43:27
Dernière modification le : mardi 17 avril 2018 - 09:08:52
Document(s) archivé(s) le : mardi 21 mars 2017 - 00:39:51

Fichier

ccl_averaging_submit.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01396685, version 1

Citation

Philippe Chartier, Nicolas Crouseilles, Mohammed Lemou. Averaging of highly-oscillatory transport equations. 2016. 〈hal-01396685〉

Partager

Métriques

Consultations de la notice

333

Téléchargements de fichiers

109