A Coalgebraic View of Characteristic Formulas in Equational Modal Fixed Point Logics

Abstract : The literature on process theory and structural operational semantics abounds with various notions of behavioural equivalence and, more generally, simulation preorders. An important problem in this area from the point of view of logic is to find formulas that characterize states in finite transition systems with respect to these various relations. Recent work by Aceto et al. shows how such characterizing formulas in equational modal fixed point logics can be obtained for a wide variety of behavioural preorders using a single method. In this paper, we apply this basic insight from the work by Aceto et al. to Baltag’s “logics for coalgebraic simulation” to obtain a general result that yields characteristic formulas for a wide range of relations, including strong bisimilarity, simulation, as well as bisimulation and simulation on Markov chains and more. Hence this paper both generalizes the work of Aceto et al. and makes explicit the coalgebraic aspects of their work.
Type de document :
Communication dans un congrès
Marcello M. Bonsangue. 12th International Workshop on Coalgebraic Methods in Computer Science (CMCS), Apr 2014, Grenoble, France. Lecture Notes in Computer Science, LNCS-8446, pp.98-117, 2014, Coalgebraic Methods in Computer Science. 〈10.1007/978-3-662-44124-4_6〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01408754
Contributeur : Hal Ifip <>
Soumis le : lundi 5 décembre 2016 - 13:24:30
Dernière modification le : lundi 5 décembre 2016 - 14:57:16
Document(s) archivé(s) le : lundi 20 mars 2017 - 23:16:07

Fichier

328263_1_En_6_Chapter.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Sebastian Enqvist, Joshua Sack. A Coalgebraic View of Characteristic Formulas in Equational Modal Fixed Point Logics. Marcello M. Bonsangue. 12th International Workshop on Coalgebraic Methods in Computer Science (CMCS), Apr 2014, Grenoble, France. Lecture Notes in Computer Science, LNCS-8446, pp.98-117, 2014, Coalgebraic Methods in Computer Science. 〈10.1007/978-3-662-44124-4_6〉. 〈hal-01408754〉

Partager

Métriques

Consultations de la notice

130

Téléchargements de fichiers

4