On high order methods for the heterogeneous Helmholtz equation

Théophile Chaumont-Frelet 1, 2
1 Magique 3D - Advanced 3D Numerical Modeling in Geophysics
LMAP - Laboratoire de Mathématiques et de leurs Applications [Pau], Inria Bordeaux - Sud-Ouest
Abstract : The heterogeneous Helmholtz equation is used in Geophysics to model the propagation of a time harmonic wave through the Earth. Processing seismic data (inversion , migration...) involves many solutions of the Helmholtz equation, so that an efficient numerical algorithm is required. It turns out that obtaining numerical approximations of waves becomes very demanding at high frequencies because of the pollution effect. In the case of homogeneous media, high order methods can reduce the pollution effect significantly , enabling the approximation of high frequency waves. However, they fail to handle fine-scale heterogeneities and can not be directly applied to heterogeneous media. In this paper, we show that if the propagation medium is properly approximated using a multiscale strategy, high order methods are able to capture subcell variations of the medium. Furthermore, focusing on a one-dimensional model problem enables us to prove frequency explicit asymptotic error estimates, showing the superiority of high order methods. Numerical experiments validate our approach and comfort our theoretical results.
Type de document :
Article dans une revue
Computers and Mathematics with Applications, Elsevier, 2016, 72 (9), pp.2203 - 2225. 〈10.1016/j.camwa.2016.08.026〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01408943
Contributeur : Théophile Chaumont-Frelet <>
Soumis le : lundi 12 février 2018 - 13:58:10
Dernière modification le : samedi 27 octobre 2018 - 01:18:41
Document(s) archivé(s) le : lundi 7 mai 2018 - 18:26:21

Fichier

preprint_camwa.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Théophile Chaumont-Frelet. On high order methods for the heterogeneous Helmholtz equation. Computers and Mathematics with Applications, Elsevier, 2016, 72 (9), pp.2203 - 2225. 〈10.1016/j.camwa.2016.08.026〉. 〈hal-01408943〉

Partager

Métriques

Consultations de la notice

291

Téléchargements de fichiers

67