Straight: stochastic geometry and user history based mobility estimation

Dalia-Georgiana Herculea 1, 2, 3 Chung Shue Chen 2, 3 Majed Haddad 4 Véronique Capdevielle 5
1 DYOGENE - Dynamics of Geometric Networks
DI-ENS - Département d'informatique de l'École normale supérieure, CNRS - Centre National de la Recherche Scientifique : UMR 8548, Inria de Paris
5 Alcatel Lucent Bell Labs
Alcatel Lucent Bell Labs
Abstract : 5G is envisioned to support scalable networks and improved user experience with virtually zero latency and ultra broad-band service. Supporting unlimited seamless mobility is one of the key issues and also for network resource utilization efficiency. In this paper, we focus on mobility management and user equipment (UE) speed class estimation, also known as mobility state estimation (MSE). We propose a method for estimating the UE mobility which is compliant with UE history information specifications by 3GPP (3rd Generation Partnership Project). We also exploit the impact of the environment on the UE trajectory and speed when determining UE mobility state. We evaluate the effectiveness of our algorithm using realistic mobility traces and network topology of the city of Cologne in Germany provided by the Kolntrace project [1]. Results show that the speed classification of UEs can be achieved with much higher accuracy compared to existing legacy 3GPP LTE MSE procedures.
Type de document :
Communication dans un congrès
HotPOST '16 Proceedings of the 8th ACM International Workshop on Hot Topics in Planet-scale mObile computing and online Social neTworking , Jul 2016, Paderborn, Germany. pp.6, 2016, Proceedings of the 8th ACM International Workshop on Hot Topics in Planet-scale mObile Computing and Online Social neTworking. 〈10.1145/2944789.2944790〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01414185
Contributeur : Dalia-Georgiana Popescu <>
Soumis le : lundi 12 décembre 2016 - 12:15:34
Dernière modification le : jeudi 22 novembre 2018 - 14:27:01

Identifiants

Citation

Dalia-Georgiana Herculea, Chung Shue Chen, Majed Haddad, Véronique Capdevielle. Straight: stochastic geometry and user history based mobility estimation. HotPOST '16 Proceedings of the 8th ACM International Workshop on Hot Topics in Planet-scale mObile computing and online Social neTworking , Jul 2016, Paderborn, Germany. pp.6, 2016, Proceedings of the 8th ACM International Workshop on Hot Topics in Planet-scale mObile Computing and Online Social neTworking. 〈10.1145/2944789.2944790〉. 〈hal-01414185〉

Partager

Métriques

Consultations de la notice

498