Towards an effective study of the algebraic parameter estimation problem

Alban Quadrat 1
1 NON-A - Non-Asymptotic estimation for online systems
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : The paper aims at developing the first steps toward a symbolic computation approach to the algebraic parameter estimation problem defined by Fliess and Sira-Ramirez and their coauthors. In this paper, within the algebraic analysis approach, we first give a general formulation of the algebraic parameter estimation for signals which are defined by ordinary differential equations with polynomial coefficients such as the standard orthogonal polynomials (Chebyshev, Jacobi, Legendre, Laguerre, Hermite, ... polynomials). Based on a result on holonomic functions, we show that the algebraic parameter estimation problem for a truncated expansion of a function into an orthogonal basis of L_2 defined by orthogonal polynomials can be studied similarly. Then, using symbolic computation methods such as Gröbner basis techniques for (noncommutative) polynomial rings, we first show how to compute ordinary differential operators which annihilate a given polynomial and which contain only certain parameters in their coefficients. Then, we explain how to compute the intersection of the annihilator ideals of two polynomials and characterize the ordinary differential operators which annihilate a first polynomial but not a second one. These results, which are at the core of the algebraic parameter estimation, are implemented in the Non-A package built upon the OreModules software.
Type de document :
Communication dans un congrès
IFAC 2017 Workshop Congress, Jul 2017, Toulouse, France
Liste complète des métadonnées

https://hal.inria.fr/hal-01415300
Contributeur : Alban Quadrat <>
Soumis le : lundi 12 décembre 2016 - 21:18:27
Dernière modification le : mardi 3 juillet 2018 - 11:32:46
Document(s) archivé(s) le : mardi 28 mars 2017 - 00:26:05

Fichier

Annihilators.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01415300, version 1

Citation

Alban Quadrat. Towards an effective study of the algebraic parameter estimation problem. IFAC 2017 Workshop Congress, Jul 2017, Toulouse, France. 〈hal-01415300〉

Partager

Métriques

Consultations de la notice

443

Téléchargements de fichiers

93