Skip to Main content Skip to Navigation
New interface
Reports (Research report)

Metro Energy Optimization through Rescheduling: Mathematical Models and Heuristic Algorithm Compared to MILP and CMA-ES

Abstract : The use of regenerative braking is a key factor to reduce the energy consumption of a metro line. In the case where no device can store the energy produced during braking, only the metros that are accelerating at the same time can benefit from it. Maximizing the power transfers between accelerating and braking metros thus provides a simple strategy to benefit from regenerative energy without any other hardware device. In this paper, we use a mathematical timetable model to classify various metro energy optimization problems studied in the literature and prove their NP-hardness by polynomial reductions of SAT. We then focus on the problem of minimizing the global energy consumption of a metro timetable by modifying the dwell times in stations. We present a greedy heuristic algorithm which aims at locally synchronizing braking trains along the timetable with accelerating trains in their time neighbourhood, using a non-linear approximation of energy transfers. On a benchmark of the litterature composed of six small size timetables, we show that our greedy heuristics performs better than CPLEX using a MILP formulation of the problem with a linear approximation of the objective function. We also show that it runs ten times faster than a state-of-the-art evolutionary algorithm, called the covariance matrix adaptation evolution strategy (CMA-ES), using the same non-linear objective function on these small size instances. On real data leading to 10000 decision variables on which both MILP and CMA-ES do not provide solutions, our dedicated algorithm computes solutions with a reduction of energy consumption ranging from 5% to 9%.
Complete list of metadata
Contributor : François Fages Connect in order to contact the contributor
Submitted on : Tuesday, December 20, 2016 - 2:17:18 PM
Last modification on : Wednesday, October 26, 2022 - 8:14:49 AM
Long-term archiving on: : Tuesday, March 21, 2017 - 6:20:34 AM


Files produced by the author(s)


  • HAL Id : hal-01420311, version 1


David Fournier, Thierry Martinez, François Fages, Denis Mulard. Metro Energy Optimization through Rescheduling: Mathematical Models and Heuristic Algorithm Compared to MILP and CMA-ES . [Research Report] Inria Saclay Ile de France. 2016. ⟨hal-01420311⟩



Record views


Files downloads